

Future of Coal: Emissions, Energy, Fuels, and Chemicals

Dave Bayless, Ph.D., P.E Professor of Mechanical Engineering Director, Ohio Coal Research Center

Ohio Coal Research Center

Background

Coal – Uses and Concerns

- Coal is cheap and abundant
- Energy security issues will influence use
- Price differential with alternatives will drive use
- Carbon management is already limiting
- Future applications
 - Pulverized coal combustion
 - Oxycombustion
 - Integrated gasification combined cycle
 - Fuel Cells
 - Fischer-Tropsch fuel production

Future of Coal

U.S. DOE FutureGen [USDOE/NETL]

CM – It is not just carbon sequestration

Elements of Carbon Management

- Carbon separation
- Carbon sequestration
- Carbon avoidance
- Carbon recycling

Carbon Separation

Just how do you get CO₂ from flue gas?

Amine scrubbing

Chilled ammonia scrubbing

Sodium carbonate-bicarbonate exchange

Or

Use O₂ combustion to produce CO₂ and H₂O

Oxycombustion – Alternative to Gasification?

All the fun of P.C.C. with none of the nitrogen

Courtesy U.S. DOE

Carbon Sequestration

What do you do with the CO₂?

- Enhanced Oil Recovery
- Enhanced Gas Recovery

Once that fills up or runs out

- Deep saline aquifer injection (supercritical)
- Deep ocean storage (supercritical)

CM – It is not just carbon sequestration

Elements of Carbon Management

- Carbon separation
- Carbon sequestration
- Carbon avoidance
- Carbon recycling

IGCC – Carbon Reduction and Capture

U.S. DOE FutureGen [USDOE/NETL]

Electrochemical Energy Conversion

Planar Solid Oxide Fuel Cells

Ohio Coal Research Center

Future of Coal

U.S. DOE FutureGen [USDOE/NETL]

Fischer-Tropsch for Fuels Production

What is Fischer Tropsch?

- Syngas (CO and H₂) are passed over a catalyst forming longer hydrocarbon chains
- The wax can then by hydrocracked (like petroleum) to make gasoline, diesel or JP8
- A serious problem is CO₂ FT synthesis produces nearly twice the CO₂ of just using petroleum

(Coal= $CH_{0.8}$, Diesel = CH_2)

CM – It is not just carbon sequestration

Elements of Carbon Management

- Carbon separation
- Carbon sequestration
- > Carbon avoidance
- Carbon recycling

Fischer Tropsch for Coal/Biomass to Transportation Fuels

- One possible answer use bioreactors to mitigate CO₂
- CO₂ from water-gas shift can be throttled and used in bioreactor
- Controlled photosynthesis produces significant biomass
- Biomass can be dried, processed and fed to the gasifier
 - CO₂ is recycled into fuel

An Engineered Option for CO₂ Mitigation

Delivery of Visible Photons for Photosynthesis

Solar collector

Lighting panels viewed from direction of gas flow

Top of lighting panels

Membranes after five full days

Further questions?

bayless@ohio.edu

www.ohio.edu/ohiocoal

Ohio Coal Research Center