

David Teichroeb Business Development; Low Carbon Energy Strategies

Net-Zero Is A Disruptive Opportunity

The role of Net-Zero Ready construction & Near-Net Zero policy

Today's code built home

- Typically uses ~ 56 gigajoules (GJ) of thermal energy (~15.5 MWh)
- Total home energy consumption is ~ 100 GJ (27.8 MWh)
- Estimated to produce 3.3 tonnes of greenhouse gas (GHG) emissions per year

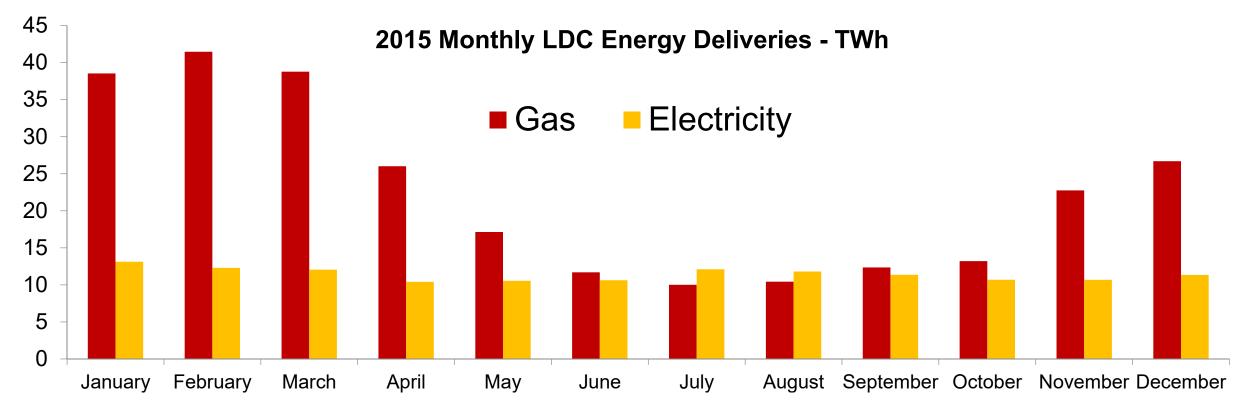
If we construct to Net-Zero Ready (NZR)

- Significant improvements in construction standards for energy efficiency
- Approximately 2/3rd reduction in GHG emissions for mixed fuel NZR home
- Near-net-zero is a concept that enables a range of technologies and renewable energy supplies to deliver remaining GHG reductions over next several decades
 - From an energy policy perspective, the last 1/3rd GHG emissions can be supported with nextgeneration disruptive technologies that support diversity and affordability

Evolving Net-Zero – Improved Diversity & Affordability Leading jurisdictions include both "Site & Source" options

Solar PV System Variable Speed Pool Pump Attic Insulation Condensing Pool Heater Smart Thermostat Energy Advanced Management Windows Smart System Meter Electric Battery Storage INTERNET ---------Smart Appliances >90% Home Furnace Run CNG / EV Piping Refueling Tankless Water SEER 18 Air Micro Conditioner CHP Most Locations/Designs Select Locations/Designs

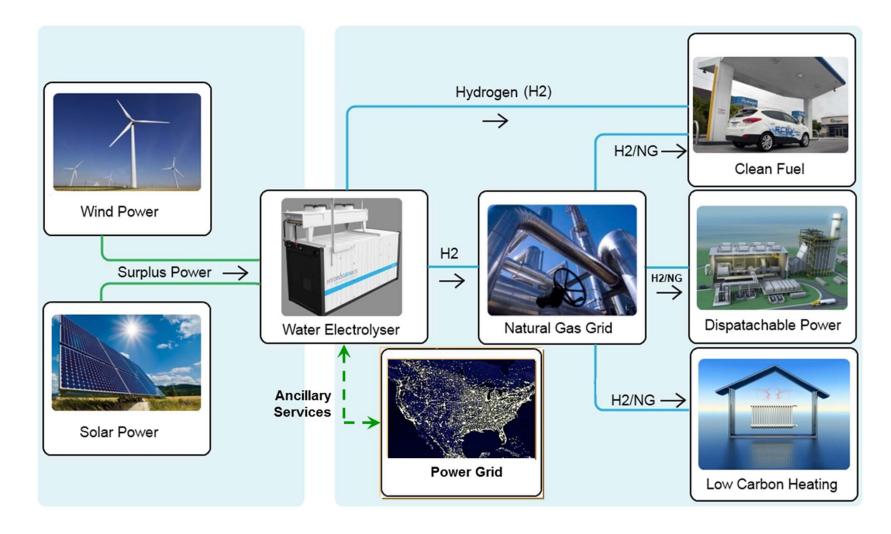
Image Source: Navigant Study on Net-Zero Conducted for Southern California Gas Company


 "NEZ-Source" was defined by the California Energy Commission in May of 2016

•California will save \$1.9 billion over 9 years and achieve GHG reductions

- A portfolio of efficiency, renewable energy generation and external renewable supply with the lowest life-cycle costs
- "Right-Sizing" on-site PV with energy storage & mCHP to optimize seasonal performance

Ontario's Energy Profile Monthly natural gas and electricity use



- Gas supplied 3.6 million customers with 270 TWh
- Electricity supplies 5.0 million customer with 137 TWh

Expanding Renewable Gas: Power- to- Gas

2 MW Energy Storage project schedule for operation in early 2017

- Power-to-Gas energy storage converts off-peak & surplus electricity to green hydrogen
- Can provide grid reliability service and bulk power mgmt. to the Independent Electricity System Operator (IESO)
- Support increased renewable power generation on the electricity grid while supplying green hydrogen for pipelines, power generation and vehicles

Examples of CO₂ as a Feedstock for Fuels

- Wastewater plants in Denmark are upgrading biogas to RNG
- Biological CO₂, normally stripped out of the biogas, is methanized with green hydrogen, from power-to-gas
- Power-to-Gas integrated with RNG plants
 - improves yield on renewable gas volumes
 - helps minimize renewable power surpluses

Source: BioCat Project, Electrochaea, Denmark - First green gas from methanation produced from project in April 2016

Comparison of Green Energy Prices

Pricing energy in similar units provides better understanding of costs

Fuel	\$/GJ	Cents/kWh	\$45 suoillig \$40
Natural Gas	5.00	1.8	a \$40 \$35
Renewable Natural Gas (Low cost)	11.00	4.0	\$30 \$25
Renewable Natural Gas (High cost)	22.00	7.9	\$25
Off-Peak Electricity	24.17	8.7	\$15
Mid-Peak Electricity	36.67	13.2	\$10 \$5
Biogas mFIT	46.64	16.8	\$-
On-Peak Electricity	51.94	18.7	₽-

Cost Impacts; Replacing Ontario's Natural Gas Energy with Low-Carbon Alternatives

Cost (\$/tonne)

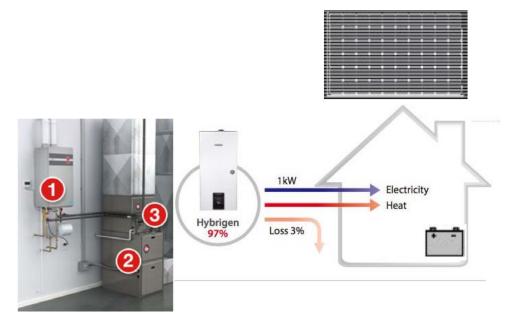
Implied Carbon

Home of the Future - Flexibility for Net Zero Incorporates Micro-Grid planning (electrical and thermal)

Decemption	
Partner(s):	Electric Utility, Enbridge, Home Builder & others
Technology Use:	Thermal micro grids, force air fan coil (replaces furnace), solar PV, battery storage, mCHP, etc.
Location:	GTA
Status:	Home builder engagement underway - testing interest with builders community & city planners
In-Service:	2017-2018 winter
Objective:	Demonstrate improved affordability for home designs that achieve deep GHG reductions

Home Of The Future

Repeatability Potential model for community redevelopment

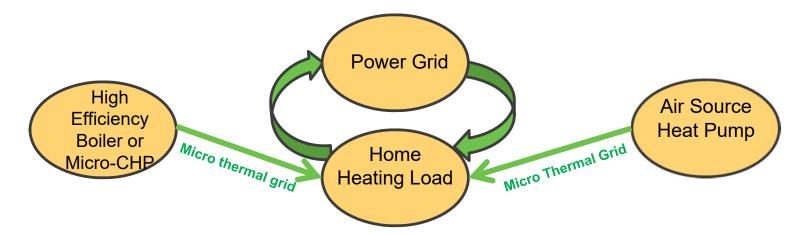

Key Objectives:

Description:

- Develop a low-carbon home design strategy that enables smart energy micro-grid design principles (electricity and thermal)
- Demonstrate how a microCHP ready home helps right-size energy equipment and costs, for solar PV, battery storage, etc.

Virtual Power Plant with Hybrid Heating (Electric Heat Pump and Advanced Gas Heating)

Source Images: Sumaran Inc. (Mark Riley, consultant to NRCan)



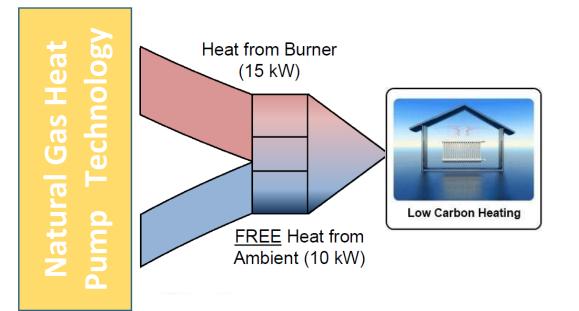
Hybrid Heating and Thermal Micro-Grids

With hybrid heating homes benefit by shifting to hot water micro-grids

Potential to integrate gas and electric thermal solutions into a hot water micro grid as new demand response services for LDC/IESO

Disruptive technologies are emerging – today's natural gas furnace and water heater could be replaced with hot water air handlers, mCHP, natural gas heat pumps, indirect water heaters, etc.

Illustration of Virtual Power Plant Potential


Micro-grids and hybrid heating a viable alternative to new-build power plants and transmission

Virtual Pov	ver Plant Opportunity pe					
		Avg Dispatchable MW	Peak Dispatchable MW			
kW	Low-Carbon Solution	per 10,000 homes	per 10,000 homes			
3	Solar Array *	4.5	4.5			
4.5	Storage Inverter **	45	45			
1.5	mCHP	15	15			
5.5	Hybrid Heating (Avg)	55	-			
11	Hybrid Heating (Peak)	-	110			
		119.5	174.5			
Footnotes:	* 10% of Variable Solar assumed as Dispatch Capacity					
	** 100% of Storage inverter dispatchable - duration dependency on battery size					
	Hybrid Heating integrates heat pump system with full gas alternative					

Emerging Gas Technology Focus

- Conservation: building envelope improvements (e.g. Net Zero Ready)
 - 40% to 60% reduction in energy and GHG emissions
- Transformative natural gas end-use technology development
 - 30% to 50% reduction in fuel & GHGs
- Greening of the Gas Grid (deep renewable penetration 2030-2050)
 - 40% to 50% reduction in GHGs

Meets 80% GHG reduction by 2050

Opportunity for Industry & Academic Collaboration

Supply-side technology developments - like solar fuels - represent a growth vector for renewable energy and cost-effective storage

- Long-term, potential exists for technology development to synthesize CO₂ into easily stored fuels
- Important to incubate research and include green gas planning into planned 2030-2050 GHG reductions
- Solar fuels leverage existing pipeline and storage infrastructure; Diversifies a deep GHG reduction strategy
- Potential to derive lower cost/tonne GHG reductions (CO₂ becomes a value add feedstock – not pollutant)

Summary

- Greening the Natural Gas Grid complements our low-carbon power supplies as a balanced approach to meeting cost-effective GHG reductions
- Power-to-gas energy storage offers a unique way to integrate our low-carbon power grid with the larger wholesale energy market in Ontario
 - Surplus low-carbon power can be leveraged for our competitive advantage not exported
- Diversity in energy infrastructure enhances energy resiliency, affordability of renewable energy and improved flexibility for energy planning
- Significant opportunities exist for the development of next-generation end-use appliances (electricity and gas) to establish robust hybrid heating solutions
- Lowest \$/tonne should be a priority under cap-and-trade and net-zero planning (lower-cost GHG reductions today / research breakthroughs in long-term)

ENBRIDGE

Questions

Jump-Starting the RNG Market

Green Gas Supplies Leverage Existing Storage for Lower Consumer Costs Compared to Electrification Options

- Digester Farm-based / Agricultural Waste
 - Highest market potential for GHG offsets

- Digester Municipal Source Separated Organics (SSO)
 - Divest organics from waste stream for the creation of renewable biogas

WASTEWATER TREATMEN

- Wastewater Treatment Facilities
 - Today this biogas is flared or inefficiently used for generating electricity

LANDFILL

- Landfill Gas clean up and injection into Pipelines
 - Earliest entry point for lower-cost RNG

Natural Gas provides low cost peak supply

Peak Natural Gas
Demand84,261Avg Natural Gas
Demand34,193Peak Electrcity
Demand24,706Avg Electrcity
Demand15,959

Ontario Energy by Fuel Type

Notes: 1. Ontario Peak natural gas demand is 6.9 bcf/day

2. Avg. natural gas demand includes refill of storage

3. Peak electricity demand recorded in Summer 2006 (IESO)

- Fuel switching large plug loads with renewable gas supplies:
- Cooking /cloths drying with renewables:
 - Green Power ~ \$93.50/year
 - Green Gas ~ \$36.50/year
 - Savings ~ 60%
- Lifestyle Benefit Consumers reduce their exposure to time of use
- Free up electricity infrastructure to accept growth in EV charging

Assumptions: a) Mid-Peak Power \$132/MWh + Toronto Hydro Residential Rate; b) Green Gas \$17.00/GJ + Enbridge Residential Rate

ife Takes Energy