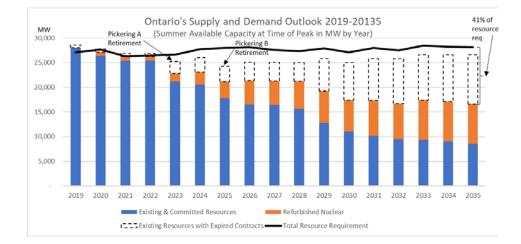
Ontario's Future Electricity Demand What Role for Nuclear?

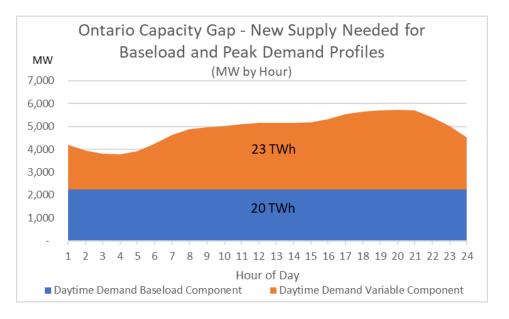
CCRE Energy Roundtable, April, 2019

Marc Brouillette Principal Consultant

Table of Contents


- 1. Ontario's Capacity Gap
- 2. Rising Emissions
- 3. Cost of Resource Options in Ontario
- 4. Renewables-Based DER
- 5. Geography and Weather Impact on Renewables
- 6. Made in Ontario Provides Enhanced Economic Benefits
- 7. Hydrogen Battery Concept
- 8. SMR-Powered Hydrogen Battery Costs
- 9. SMR Roadmap
- 10. Discussion

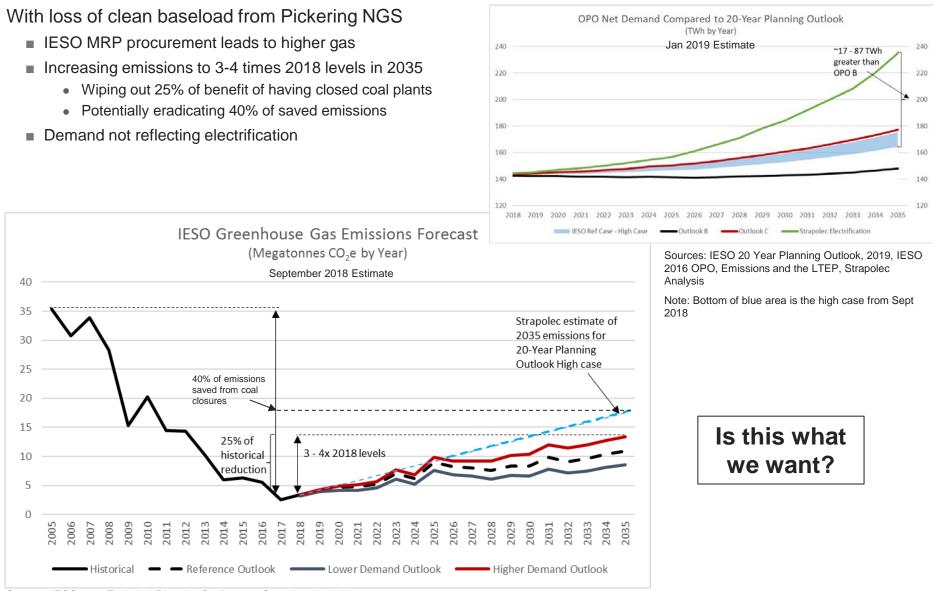
Ontario to Replace Over 40% of Generation Capacity


Ontario's power generation supply mix will change

- Contracted capacity is expiring and demand is growing
 - Mostly renewables and natural gas
 - 2,000 MW of baseload from Pickering's retirement

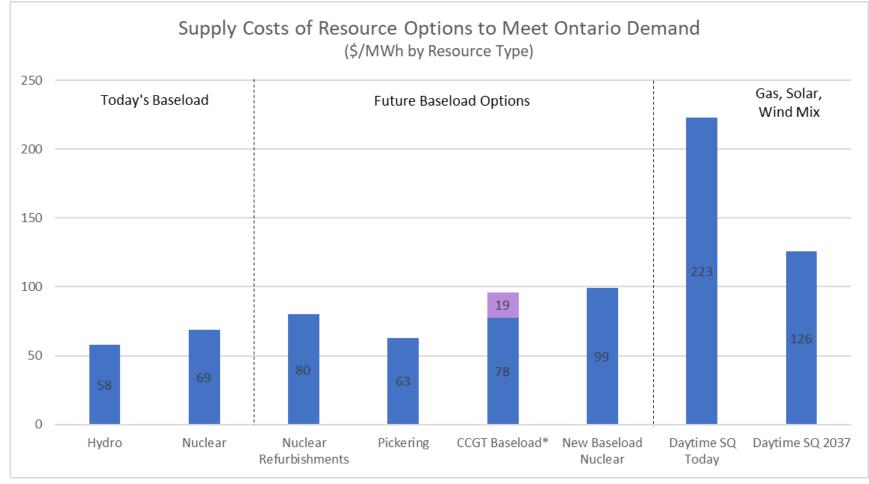
Expiring capacity supplies daytime demand

- Hydro and refurbished nuclear provide stable baseload
- 43 TWh demand above baseload to be supplied
 - 20 TWh of "baseload-like" demand
 - 23 TWh of daytime variable demand



Sources: IESO 2018 Technical Planning Conference, Renewables-Based Distributed Energy Resources in Ontario, Strapolec Analysis

Emissions to Grow Under Current Plan


IESO Market Renewal Program (MRP) likely to procure natural gas-fired generation

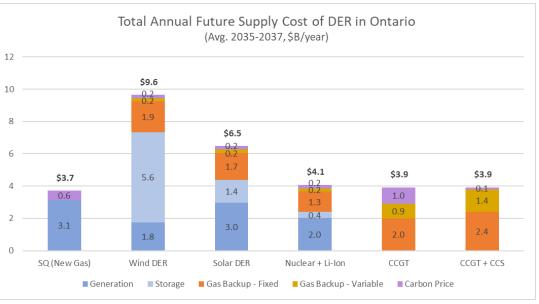
Sources: IESO 2018 Technical Planning Conference, Strapolec Analysis

Cost of Resource Options in Ontario

*CCGT Baseload carbon price shown at \$50/tonne

Daytime SQ (Status Quo) represents the existing Ontario 2018 electricity supply mix to meet demand above baseload. Daytime SQ 2037 is a similar supply mix used to meet 2037 demand based on OPO 2016 renewables cost assumptions for 2030 costs – Wind at \$86/MWh, Solar at \$90/MWh, substantially less than today

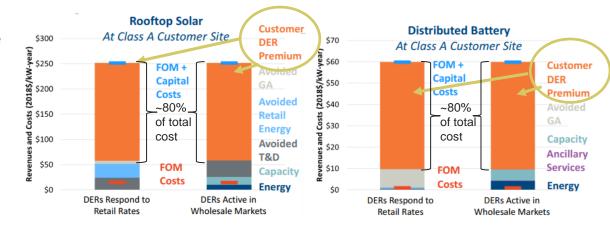
Sources: OEB RPP April 2017, FAO, Strapolec Pickering Report, OPO 2016, EIA 2017, Lazard LCOE Analysis 2017, Strapolec Analysis


Renewables-Based Distributed Energy Resources (DER) are Costly

But promoted by the LTEP and being pursued by utilities and IESO as viable alternatives

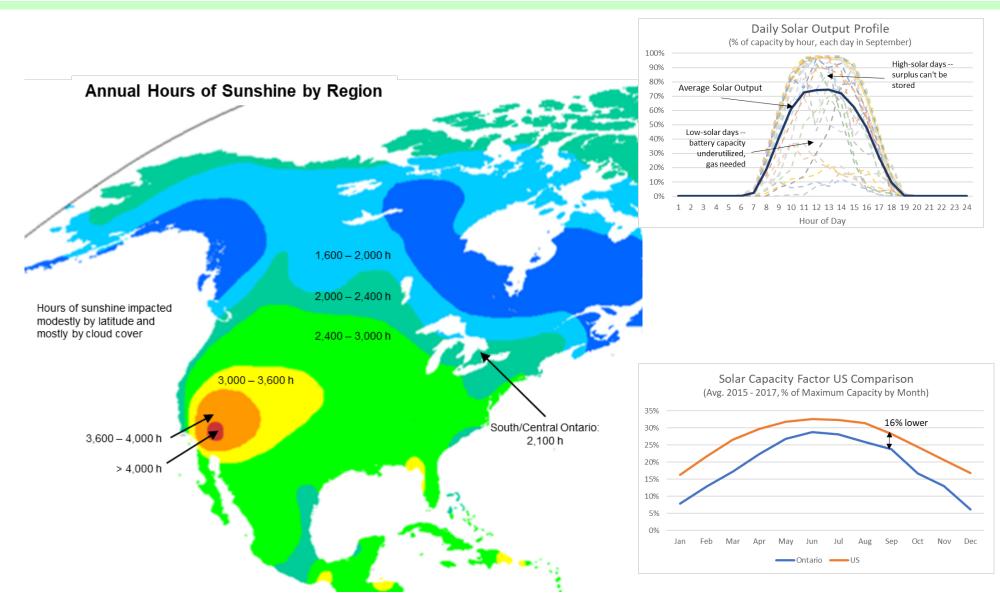
Study conducted to understand total system cost of DER coupled with storage

Four Scenarios


- Grid-scale wind with compressed air storage
- Distributed <u>community</u> scale solar with storage
- Grid scale nuclear coupled with distributed storage
- Natural gas fired CCGT for comparison

SQ = today's status quo supply mix deployed to meet 2035 demand

Residential scale solar DER is even more costly


 Customers premium would be 4 times greater than the cost of electricity today

Sources: OPO 2016, EIA 2017, Lazard 2017, Renewables-Based DER in Ontario, Modelling Ontario's Future Electricity Markets Brattle Group report to IESO NERSC, Strapolec Analysis

Geography and Weather Impact Renewables Output

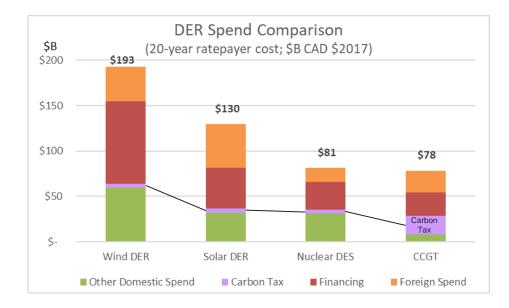
Sources: Renewables-Based Distributed Energy Resources in Ontario, Strapolec Analysis

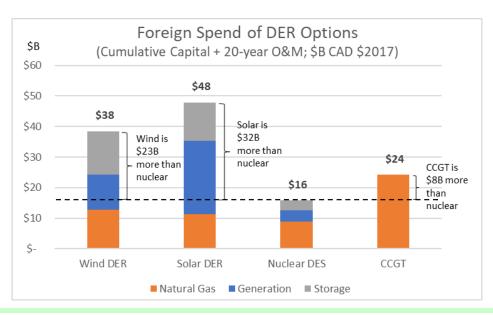
Made in Ontario Provides Enhanced Economic Benefits

Total rate payers costs for nuclear is \$50B less than for solar and \$120B less than wind

- Nuclear would, however, cost \$3B more than gas
 - after the carbon tax

Economic benefits arise from domestic spend

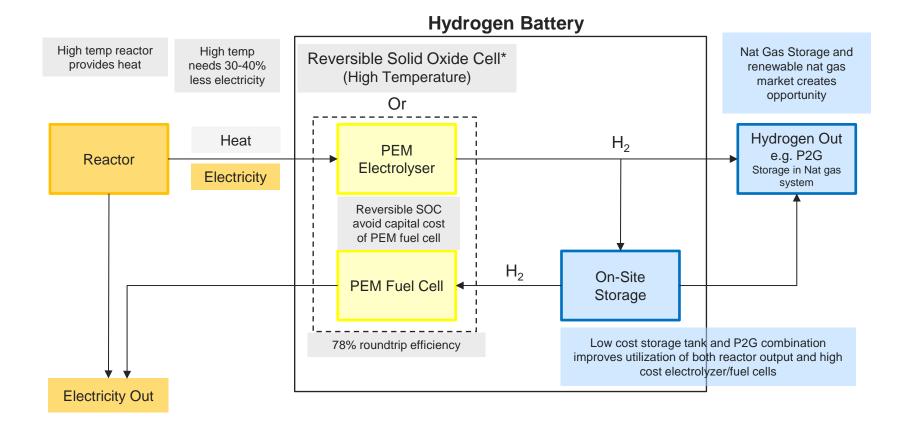

- Nuclear domestic spend is \$27B,
- Natural gas fired CCGT has only \$8B
 - With a carbon tax, the domestic spend for the CCGT becomes \$30B


Foreign spend on imports

 Nuclear-based DES system would be \$8B less than the natural gas-fired option.

Repatriating this \$8B into the economy:

- Generate \$10B in GDP
- Adds \$1.8B to government revenues
- Helps sustain 2,300 nuclear-based DER jobs per year
- Reduce the tax burden on Ontario's residents.



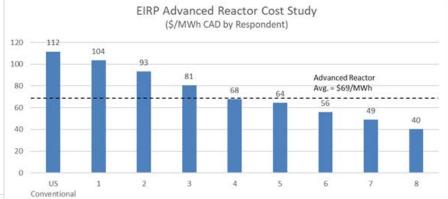
Schematic of Hydrogen Battery Concept

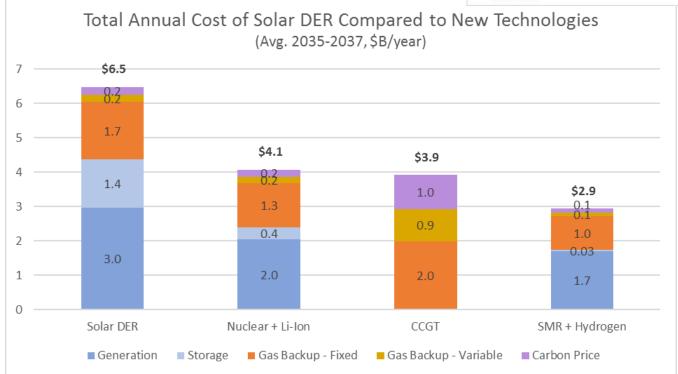
Could be a ReSOC to a PEM-based electrolyser and fuel cell

Notes:

- Commercializable ReSOC still in development stage, parameters are theoretical potential
- There are other candidate high temperature technologies in development

Li-Ion batteries have an 86% round trip efficiency


Source: Discussion with Prof. Olivera Kesler, Lazard Levelized Cost of Energy Storage 2017, Strapolec Analysis


SMR-Powered Hydrogen Battery Concept Lowest Cost Option

Surveys of SMR vendors suggest levelized costs would be about \$69/MWh (USD)

Advanced SMR paired with hydrogen battery could be less costly than CCGT option for supplying daytime demand

Source: EIRP Advanced Reactors Cost Study

Source: Emissions and the LTEP, Renewables-Based Distributed Energy Resources in Ontario, DOE Hydrogen and Fuel Cell Program Record 2016 & 2018, CH2M Hydrail Study 2018

SMR Roadmap Published by the Canadian SMR Roadmap Steering Committee

STRATEGIC POLICY ECONOMICS

Committee undertook a 10-month initiative to	Distinct Markets						
 Committee undertook a 10-month initiative to help Canada become leader in SMR tech Voting members Industry: Alberta Innovates, Bruce Power, New Brunswick Power, OPG, Qulliq Energy Corp., SaskPower Governments: New Brunswick, Northwest Territories, Ontario 	On-grid power 150 – 300 MW e.g Replacing coal-fi power, oil sands	fired S	indu 10 – 80 e.g. High-te	30 MW emperature or heavy stries	e.g	Off-grid communities 1 – 10 MW e.g. Remote communities and mines	
 Non voting members NRCan, AECL Identified 	GovernmentFederalInterested	• CN • AE		Custome Utilities an owner/ope	and	• SMR vendors and technology developers	
 Markets Key Enablers Recommendations under 4 thematic pillars 	Provincial and Territorial	Cana nucle chair • Acao • Nucl indus	IL IA	s End-user industries OCNI and Canadian nuclear suppl	r s id n		
Next steps for turning Roadmap into action Key organizations to take early action on priority recommendations 			ain ademia Iclear Justry vil society	chain			
 with commitments to further concrete action Industry and governments to co-create Canada's Nuclear Energy Advisory Council to review progress annually and discuss ongoing strategic priorities for future 	Recommendation Pillars						
	Demonstration and Deployment	Legis	Policy, slation and egulation	Capacit Engagem and Pub Confider	nent, blic	International Partnerships and Markets	
NRCan is independently advancing Canada as a supportive nuclear nation	Not clear how next steps are being pursued						

Source: SMR Roadmap, NRCan Small Modular Reactors for Mining Presentation March 2019

Discussion

