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Drivers of Change in Ontario’s
Energy Sector

Age Negative Culture of Climate Oil & Gas

Workforce & & Rising Plenty & Change |Abundance
Infrastructure Prices NIMBY

Smart Renewables Energy Innovation
Meters | (intermittent) | 'Gtgrage & | Innovation | Regulation | Economics
Smart Grid EVs & Politics

DER
grid parity &
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Distributed Energy Resources (DER)
defined by the NY REV (2014)

DER technologies are defined as “behind-the-meter” power generation and
storage resources typically located on an end-use customer’s premises and
operated for the purpose of supplying all or a portion of the customer’s
electric load. Such resources may also be capable of injecting power into the
transmission and/or distribution system, or into a non-utility local network in
parallel with the utility grid.

These DERs include such technologies as solar photovoltaic (PV), combined
heat and power (CHP) or cogeneration systems, microgrids, wind turbines,
micro turbines, back-up generators and energy storage.

Some, including the New York Public Service Commission (PSC), have defined
DERs more broadly to include energy efficiency and demand response.
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The State of Development of
Distributed Energy Resource (DER) Technologies

DER
Technologies

]
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Internal External Energy
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Microgrids are defined by their
function, not their size.

Most microgrids can be described by one of five categories:

1. Off-grid microgrids including islands, remote sites, and other microgrid systems not
connected to a local utility network.

2. Campus microgrids that are fully interconnected with a local utility grid, but can also
maintain some level of service in isolation from the grid, such as during a utility
outage. Typical examples serve university and corporate campuses, prisons, and
military bases.

3. Community microgrids that are integrated into utility networks. Such microgrids
serve multiple customers or services within a community, generally to provide
resilient power for vital community assets.

4. District Energy microgrids that provide electricity as well as thermal energy for
heating (and cooling) of multiple facilities.

5. Nanogrids comprised of the smallest discrete network units with the capability to
operate independently. A nanogrid can be defined as a single building or a single
energy domain.

Ryerson
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Estimating the costs of DER Technologies is
complex; it involves:

* Capital costs (S/kW) — here we note a trend of declining price points
over time, particularly for solar PV and some battery technologies.

* Installation costs which is a function of labour and geography (location,
existing infrastructure, weather/climate, etc.)

* Maintenance costs which is a function of the technology type,
maintenance frequency, labour etc.

 Costs associated with the integration of the technology and the need
for protection systems, breakers, transformers, smart inverters, voltage
regulators, etc.

 Costs associated with the IT (and communication) components of the
connected grid including HAN, NAN, FAN, WAN, PLC, WIFI, WIMAX, Dash
7, 3G/AG, LTE-A, ZigBee!... and cyber security systems.

Source: after B.L. Capehart, 2014: https://www.wbdg.org/resources/der.php

1Elyengui et al., 2013: http://arxiv.org/pdf/1403.0530.pdf R
ygrsor)
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DER CHARACTERISTICS & COSTS (USS)

Internal Combustion Technologies Fuel Cell Technologies Storage Technologies Solar
Characteristic
. . . . . Combustion Gas Proton Exchange . . Molten Carbonate . R High Power e.g., |High Energy e.g.,
Reciprocating Engine Micraturbine Turbine Membrane (PEMFC) Phosphoric Acid (PAFC) (MCFO) Solid Oxide (SOFC) Eion e PV
Size 30KW-6+MW 30-400kW 0.5-30+MW <tkw-sookw | COKWIMW (250KW | <IKWSMW (S0KW |y gy KWs toMWs | kWs to Mws |02 KW per module, could be
module typical) module typical) 000s of MW
Power Density (lecmZ) 2,900 - 3,850 3,075-7,175 1,750 - 53,800 350-800 140 - 320 100-120 150 - 700 N/A N/A up to 175
. 450°C 980°C 1,930°C 50-100°C 150-200°C 600-700°C 600-1,000°C . . .
bl (850°F) (1,800°F) (3,500°F) (122-212°F) (302-392°F) (1,112-1,292°F) (1,202-1,832°F) ambient 290-360°C Ambient + =20 C
Start-up Time 10s to 15 mins Up to 120s 2 -10 min 15 - 30 min 34 hrs 8-24 hrs 8-24hrs ms ms ms
Elec. Efficiency (LHV) % 30-42% 14-30% 21-40% 36-50% 37-42% 45 - 50% 40-60% 93-97% 85-90% 15%
Electric+ Thermal (CHP) 80-85% 80-85% 80-90% 50-75% <85% <80% <90% 90-94% AC | 78-80% AC n/a
Efficiency %
$1,200- $3,500-
Installed Cost ($/kW) $700-1,200/kW $1,200-1,700/kW $400-900/kW $3,500/kw $4,500 - 9,000/kW | $4,200-7,200/kW | $3,500 - 8,000/kW $2,000-5,000/kWp
1,800/kW 4,000/kW
Fixed O&M Cost $600-1,000/kW $700-1100/kW S600/kW $1000/kW S400/kW $360/kW $175/kW $8-30/kwW $15-40/kwW $10-30/kWp
0.002-
Variable 0&M Cost $0.007 - 0.02/kWh $0.005 - 0.016/kWh| $0.004 - 0.01/kWh $0.003/kWh $0.002/kWh $0.004/kwWh $0.0045-0.0056/kWh 0 fI)MkWh $0.03 0.09/kWh $10-30/kwp
750 - 1,000 hrs: change oil and
. e . . 8,000 hrs (annual
Mainte Interval/Fuel Cell |oil fit 2 terval, 10 |2 hr interval, 10 L
intenance Interval/Fuel Cell ol fiter o 5000-8000hrs | 4000-8000hrs |  20,000+hrs | 40,000 - 80,000 hrs 40,000+ hrs 25,000- 70,000 hrs | ¥ e rimenva maintenance for central
Maodule Durability 8,000 hrs: rebuild engine head yr life year life inverters)
16,000 hrs: rebuild engine block

DNV GL ENERGY, 2014: Review of DER, Report Submitted to the NYISO, p 45.
http://www.nyiso.com/public/webdocs/media room/publications presentations/Other Repo

rts/Other Reports/A Review of Distributed Energy Resources September 2014.pdf
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DER CHARACTERIST

Microturbine

CS & COSTS (USS)

li-ion

High Powere.g.,

Size

30-400kW

kKWs to MWs

PV

Power Density (mW/cm’)

3,075 - 7,175

N/A

0.2 kW per module, could be
000s of MW

Operating Temperature

980°C
(1,800°F)

upto 175

Ambient + ~20 C

Start-up Time

Upto 120s

Elec. Efficiency (LHV) %

14-30%

Electric+Thermal (CHP)
Efficiency %

80-85%

Installed Cost ($/kW)

$1,200-1,700/kW

Fixed O&M Cost

$700-1100/kW

Variable O&M Cost

$0.005 - 0.016/kWh

Maintenance Interval/Fuel Cell
Module Durability

93-97%

ms

90-94% AC

n/a

$1,200-
1,800/kW

$2,000-5,000/kWp

$8-30/kW

$10-30/kWp

$0.002-
0.004 /kWh

$10-30/kWp

yr life

2 yr interval, 10/

8,000 hrs (annual
maintenance for central
inverters)

DNV GL ENERGY, 2014: Review of DER, Report Submitted to the NYISO, p 45.



DER - High Estimated Costs USS 2014
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Why solar power will take over the world.

Price of a solar panel per watt Global solar panel installations
v A 4
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http://www.treehugger.com/renewable-energy/striking-
chart-showing-solar-power-will-take-over-world.html Rygrsor]
University



http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html
http://www.treehugger.com/renewable-energy/striking-chart-showing-solar-power-will-take-over-world.html

50

48

40

w w
N (=]

n
(o=

Efficiency (%)

n
o

s
D

12

Best Research-Cell Efficiencies

rINREL

NEAE WAL ENEN Y

Multijunction Cells (2-terminal, monolithic)  Thin-Film Technologies
LM = lattce mafchod © CIGS (concentrator) o s"‘gb
= MM = metamorphic ® CIGS P m olar (IMM, 302x)
IMM = invortod. metamorphic O CdTe (LM384x)  gore  oneton /- Solteo
V' Threejunction (concentrator) O Amorphous Si:H (stabilized) Sooctiolsb | Fraunholer 15 W 9 LM 942 (40, 207%)
l— ¥ Three-junction (non-concentrator) @ Nano-, micro-, poly-Si MM, 299x) | (MM, 454x mg
A Two-junction (concentrator) Emorgtng PV Boeing-Spectrolab  Boeing-Spectrolab
A Two-junction (non-concentrator) O Dyo-sensitized cells (MM, 170x MM 240x) 12
N B Four-junction or more (concentrator) O Perovekite colls ? . Solar Boeing-
O Four-junction o more (non-concentrator) @ Organic cells (various types) NREL (IMM) A Junction Spectrolab (5-J)
Single-Junction GaAs A Organic tandem cels M Sharp (IMM)
; @ Inorganic cells (CZTSSe) o 4
| A Single crystal © Dhnis dot deta Sharp (IMM
A Concentrator AT Ot 08
V' Thinfilm crystal NRE
Crystalline Si Cells japan  SPectro
— B Single crystal (concentrator) NREL nergy ah
W Single crystal (non-concentrator) ariey NREL « & & (1026x Alta
O Multicrystalline Varian (216x o :
| @ Thick Sifilm 25008 Po
® Siicon heterostructures (HIT) LR e eccecpeneneneenaenan=e===d(@) P""g‘";ow
V7 Thinim crysa 7 1
" /arla o UNSW W — .
b UNSW UNSW ‘r - Panason
BM \ v Samn Sanvo
(TJ. Wats _______--:--
Research Center 78W ¢ ""‘i‘v
mallarea) . ted Solar (aSiin \IW
B O= Sharp NIMS
-7 iap 1BM
| e
roningen

1990

|
2005

1
1995 2000

Figure 4-2. Solar Cell Efficiencies over Time

Ryerson

University




Installed Price (2011$Woboc)
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Figure 4-3. Installed Price of Residential & Commercial PV over Time
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[Y-AXIS 2012$/kWh]
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System Costs and Revenue [Real 20145]

Distributed Energy Storage: Cost, Incentives

$5,000
and Use Case Value Streams (2015 USS)
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Rocky Mountain Institute, February 2014:
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o GRID PARITY FOR RESIDENTIAL OR COMMERCIAL SOLAR
INSTALLATIONS COULD OCCUR IN THE NEXT 5 TO10 YEARS

IN ONTARIO
—Residential Levelised Grid Electricity Price = —Levelised Solar PV Cost
Commercial Levelised Grid Electricity Price
0.35
0.30
—~ 0.25
<
S
& 0.20
S
= 0.15
0.10
0.05 rapid decline in
technology costs
0.00
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
Source: Navigant N AV I G A N T 74

MaRS  ourFuture Matters Ron Dizy, 2016, T+Dx Conference ’ 5



Problems Solved Problems Posed by DER

Drivers for Microgrid Development:

* Need for electrification in remote locations and developing countries
* Customer need for more reliable, resilient, and sustainable service
* Grid security and survivability

e Utility needs for grid optimization, investment deferral, congestion
relief, and ancillary services

 Demand for lower-cost energy supplies than are locally available
(especially at remote sites, such as islands, military or
mineral/resource installations, and isolated communities relying on
expensive, high-polluting fuels)

* Environmental, efficiency, and renewable energy benefits

Source: http://www.microgridinstitute.org/about-microgrids.html
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Problems Solved Problems Posed by DER

Customer Benefits attributed to DERs include:

* avoided costs - energy and demand bill management;

* resiliency - power outage mitigation or critical power support
during power outages;

* reliability - power quality improvement;

* revenue - direct compensation by grid operators or providers for
services; and

* financial incentives as defined by local, state/provincial or federal
policymakers (avoided costs or revenue).

Source: DNV GL ENERGY, 2014: Review of DER, Report Submitted to the NYISO, p 45. Ryerson
University




Problems Solved Problems Posed by DER
Grid benefits of DER:

(which vary greatly by location and are dependent on the grid characteristics):

* reduced grid losses achieved by providing power closer to the customer and by
reducing peak loads;

* development of virtual power plants

* volt/var support achieved either indirectly or directly through the use of
inverters and reactive power controls;

 deferred need for generation, transmission or distribution capacity by reducing
peak load;

* grid ancillary services, such as selling reserves and capacity services in wholesale
markets;

* avoided emissions;

e improved grid resiliency by directly serving customers during outage or power
quality events or potentially supporting restoration processes;

improved energy security from increased fuel diversity; and

avoided energy production or purchases.

Ryerson
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Problems Solved Problems Posed by DER

While certain DER technologies can provide grid benefits, they
also potentially create problems under current operating
paradigms. For example:

* intermittent or variable power production can affect local
voltages, creating new requirements for grid voltage
management.

* excess production from DG can result in reverse power flows
where aggregate DG is greater than aggregate demand;
solutions are costly involving re-conductoring power lines,
adding breakers and capacitors, and upgrading transformers
and tap changers.

Source: SWECO, 2015 Ryerson
University




Schneider Electric Smart Grid Laboratory

Built to serve as a “sandbox” for Ontario institutions to develop, demonstrate and
discover new smart grid products, solutions and ideas... and to provide a platform
for training of the next generation of smart grid engineers, scientists and planners.

= 1,'«-.

SUBSTATION " FEEDER 1 FEEDER 2 FEEDER 3
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Schneider Electric Smart Grid Laboratory

AMI (Advanced SCADA (Supervisory ADMS (Advance Distribution
Metering Infrastructure) Control &Data Acquisition) Management System)
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APPLIED

researcH ) O0lar panels and transformers

The impact of solar panels on transformer F% gli}'

-1 Ad
~
e |
* 5
v

Name of Project: B

station components =

Timeline:
January 2011 — January 2014

Research Focus:
Renewables

Principal Investigator:
Dr. Bala Venkatesh

Research Team:
Dr. Travis Xu, Dr. Mohamed Awadallah,
Pauline Dongrazi

Increasing the operational life of
distribution transformers...

hydro& PR

*Awadallah et al., 2015: On the Effects of Solar Panels on Distribution e ——

Transformers, |IEEE Transaction on Power Delivery, 10 p. one



Conclusion: Six forces controlling change
to the electricity Grid?

A ruport by tha Delottta Cantar for Encrgy Solutors

Customer Demand

DER Technologies & Microgrids
Regulations

Alternatives to the Grid
Unexpected Competition

Costs & Benefits of the Grid

Source: after Gregory Aliff, 2013: Energy & Resources, Deloitte LLP Ryerson
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