

Distributed Generation

Desired attributes of a DG technology

- Technically sound
- Environmentally sustainable → low GHGs
- Economical efficient use of fuel →acceptable per unit cost
- Safe, reliable operation
- Small footprint and attractive design acceptable to communities where power is needed → reduce transmission/distribution losses
- Simple, quick permitting process

Ottawa Facility: Commercial Module

Ground breaking:Sept 2006Construction:9 monthsPower sales:13 monthsMSW receipt:16 monthsPower from MSW:

PlascoEnergy GROUP

Waste need not be wasted

One tonne of MSW results in the following saleable products:

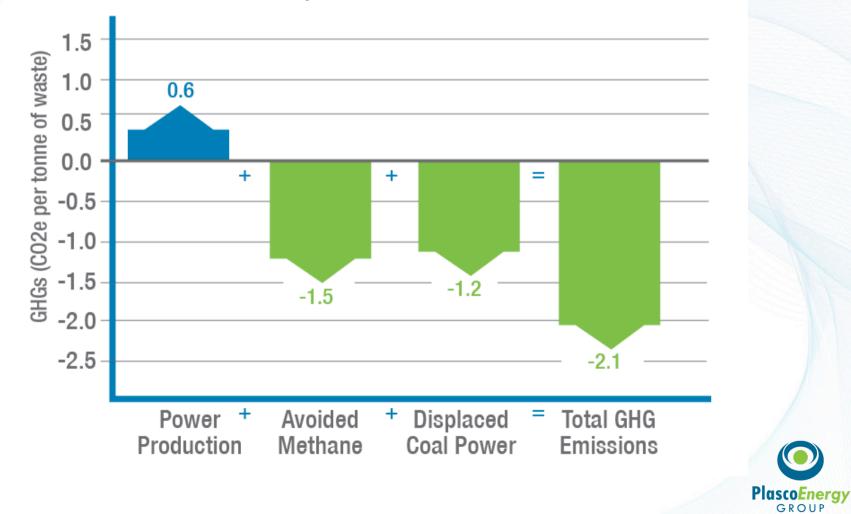
Based on typical Canadian municipal solid waste with a net calorific value of 3550 Mcal/T.

99.8% of the waste is recovered

Better than the most stringent air regulations

Parameter	Units	EU	California	Ontario A-7	Trail Road Limits	PlascoEnergy Targets
Particulate Matter	mg/Rm ³	9	16	17	12	3
Organic Matter	mg/Rm ³	9	-	66	50	9
Hydrogen Chloride (HCI)	mg/Rm ³	9	27	27	19	2
Hydrogen Fluoride (HF)	mg/Rm ³	0.92	-	-	-	0.02
Sulphur dioxide (SO ₂)	mg/Rm ³	46	56	56	37	10
NOx expressed as NO ₂	mg/Rm ³	183	202	207	207	9
Carbon monoxide (CO)	mg/Rm ³	46	41	/////-/////////////////////////////////		34
Mercury (Hg)	µg/Rm³	46	60	20	20	0.5
Cadmium (Cd)	µg/Rm³	46		14	14	1
Lead	µg/Rm³	-	140	142	142	12
Dioxins and furans	ng/Rm ³	0.092	9	0.08	0.04	ND

Notes:


1. All values are expressed at 11%O₂ and reference conditions (101.3 kPa, 25°C)

2. EU regulations combine Thallium with Cadmium and Lead with Class III Metals

Maximum Environmental Protection GHG Reductions

Greenhouse Gas Reductions per Tonne of Waste

Comparing the Alternatives WHAT HAPPENS TO 1 TONNE OF WASTE?

Maximum Value

Comparator	Plasco Conversion	Incineration	Landfill with Landfill Gas Capture	
Power Generation	X			
Primary	GE Jenbacher Engine	Heat Recovery-Steam Turbine	Internal Combustion Engine	
Secondary	Heat Recovery - Steam Turbine			
Power per Tonne	1.2 MWh	0.6 MWh	0.15 MWh	
Diversion	99.8%	75-80%	0%	
			PlascoEr	

Comparing the Alternatives WHAT HAPPENS TO 1 TONNE OF WASTE?

Maximum Environmental Protection

Comparator	Plasco Conversion	Incineration	Landfill with Landfill Gas Capture 1.2	
GHG's avoided - tonnes CO2e (Carbon Credits)	2.1	1.5		
CACs (per MWh)	No.			
NOx (g)	80	1660 ^b	570 ^e	
Sulfur (g)	40	95 ^b	50 ^a	
Particulate Matter (g)	13	37 ^b	8 ^e	
CO (g)	168	190 ^b	2950 ^e	
Mercury (mg)	2	60 ^d	2 ^a	
Dioxins and Furans (ng)	ND	60 ^d	ND	

a Parameters based on US EPA AP-42 Emission Factors for IC engines and landfill methane produced per tonne of waste.

b Based on Montenay's response to Request for Expressions of Interest, GVRD, 2006.

c Assumes 90-100 ppm H2S in gas.

d Based on "Life Cycle Assessment of Two Waste Management Scenarios for Metro Vancouver".

e Based on 2006 National Pollutant Release Inventory (NPRI) data for Vancouver Landfill and electrical capacity of 7.4 MW

Renewable power with the most benefits

	PLASCO CONVERSION	WIND	SOLAR
Provides base load power			
Methane Avoidance from Landfills			
Elimination of Long-distance Trucking of Waste – GHG reduction			
Displacement of GHG- intensive Power (e.g. Coal)			
Reduction in Transmission Losses			

PlascoEnergy GROUP

Zero Risk Business Model

PlascoEnergy will build, own & operate the conversion system

Key benefits to local utilities & municipalities:

- Secure supply of renewable base load power
- > No capital or operational costs
- Environmentally sound management of municipal waste
- Long-term budgetary certainty
- Guaranteed environmental performance
- Rapid start-up 15 months after permitting
- > Small footprint, community friendly appearance

Designed for urban settings

Los Angeles

Montpellier, France

Distributed Generation

